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Abstract

The stability of the mechanical equilibrium of a plane horizontal binary mixture layer with Soret e}ect in the presence
of high frequency transversal vibration is studied[

The asymptotic analysis for long!wave disturbances and the numerical solution of the spectral amplitude problem for
cellular disturbance has shown that independently of properties of the binary mixture the e}ect of transversal vibration
is always stabilizing[ The critical values of Rayleigh number and the characteristics of critical disturbances are determined[
Þ 0887 Published by Elsevier Science Ltd[ All rights reserved[

Nomenclature

b displacement amplitude
C deviation of concentration from reference value CÞ
D coe.cient of di}usion
f"z# amplitude of F!disturbances
F stream function for oscillatory part of the velocity
` acceleration of gravity
h thickness of the layer
j ~ux of lightest component
k wave number
Le Lewis number
n unit vector along axis of vibration
p pressure
Pr Prandtl number
Ra Rayleigh number
Rav non!dimensional vibrational parameter
Sc Schmidt number
v "vx\ vy\ vz# mean velocity
w "wx\ wy\ wz# oscillatory velocity
"x\ y\ z# Cartesian coordinates[

� Corresponding author[

Greek symbols
a thermodi}usional ratio
b0 coe.cient of thermal expansion
b1 concentrational coe.cient of density
g unit vector along z!axis
o non!dimensional Soret parameter
u amplitude of T!disturbances
U di}erence of temperature
l decrement
n kinematic viscosity
j amplitude of C!disturbances
r density
t period of vibration
8"z# amplitude of c!disturbances
x coe.cient of heat di}usivity
c stream function for mean part of the velocity
V angular frequency of vibration[

0[ Introduction

It is well known that vibration of a cavity _lled with
~uid has a strong e}ect on the convective ~ows in the
presence of non homogeneous temperature distribution[
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In some cases the vibration can provoke a mean ~ow with
the structure and intensity depending on the direction and
characteristics of the vibration[ Thus\ in the general case
it is possible to distinguish two mechanisms of thermal
convection excitation*thermogravitational and thermo!
vibrational[ The problem of thermovibrational con!
vective stability of mechanical equilibrium in the state of
weightlessness has been investigated ð0Ð3Ł[

The problem of vibrational convective instability for
the case of a binary mixture with Soret e}ect has been
investigated recently ð4Ł[ The e}ect of longitudinal high
frequency vibration on a plane horizontal layer of the
mixture\ with rigid and isothermal boundaries\ was stud!
ied[ It was shown that convective instability is caused
by both mechanisms of excitation*thermogravitational
and thermovibrational\ which are superimposed[

In the present paper we consider the case where the
axis of vibration is vertical\ i[e[ transversal with respect
to the layer[ Physically the situation is quite di}erent
from the one considered in ð4Ł[ For a one component
medium it has been proven ð1Ł that the equilibrium is
absolutely stable if the axis of vibration is parallel to the
temperature gradient[ Thus one expects that for a binary
mixture the mechanical equilibrium will be stable if the
axis of vibration and the density gradient are mutually
parallel[ The analysis performed con_rms this expec!
tation[

In Section 1 the problem is described and the main
equations are written down[ In Section 2 the state of
mechanical equilibrium is considered and the problem of
its linear convective stability is formulated[ In Section 3
the asymptotic analysis is developed for the limiting case
of long!wave normal disturbances[ The wave number of
the normal mode is used as a small parameter for regular
perturbation theory[ In Section 4 the numerical results
for arbitrary wave numbers "cellular modes# are pre!
sented and discussed[

1[ The problem description and the basic equations

We consider an in_nite plane horizontal binary mix!
ture layer with Soret e}ect[ The horizontal boundaries of
the layer are assumed to be rigid\ isothermal and imper!
meable to the mixture components[ The Cartesian coor!
dinate system is chosen with the origin on the lower plate
z � 9 and with the z!axis directed vertically upward[ The
temperature of the lower plane z � 9 is maintained con!
stant and equal to U\ the temperature of the upper plane
z � h is chosen as a reference point 9\ so both cases U × 9
and U ³ 9 will be considered corresponding to heating
from below or from above[ There is a static gravity _eld
with acceleration g "9\ 9\ −`# and also the high frequency
vibration with an axis which is parallel to the z!axis[

There is no external di}erence of concentration and the
inhomogeneity of concentration which appears is only

caused by the temperature gradient and the Soret e}ect[
We will see later that in the situation described\ the
speci_c vibrational mechanism of instability excitation is
not operative\ so the only reason for instability is the
potentially unstable density strati_cation in a static gravi!
tational _eld[ Thus the instability mechanism expected is
of the RayleighÐBenard nature[ To describe the ther!
mogravitational and concentration gravitational con!
vection we therefore assume that the standard Boussinesq
approximations are valid[ Thus the equation of the state
is of the form

r � r¹ "0−b0T−b1C# "1[0#

where r and r¹ are the ~uid density and its standard value\
respectively^ T is the temperature^ C is the concentration
of the lightest component "T and C are only slightly
di}erent from the {constant| values T and C#^ b0 × 9 the
thermal expansion coe.cient^ and b1 × 9 the con!
centrational density coe.cient[

The equation of motion in the non inertial proper
coordinate system\ connected with the vibrating layer
must take into account the vibrational acceleration\ i[e[
the gravitational acceleration g\ must be replaced by

g : g¦bV1 cos Vtn "1[1#

where b is the displacement amplitude\ V is the angular
frequency and n is the unit vector in the direction of the
vibration axis[

Then we have the equation of motion in the form

1v

1t
¦"v9#v � −

0
r

9p¦nDv¦`"b0T¦b1C#g

¦"b0T¦b1C#bV1 cos Vtn "1[2#

where v is the velocity\ n is the kinematic viscosity and g

is the unit vector along the z!axis[ The expression for
the ~ux of lightest component is used to elaborate the
equation for concentration taking into account the Soret
e}ect]

j � −r¹D"9C¦a9T# "1[3#

where D is the di}usion coe.cient and a is the ther!
modi}usional ratio "a × 9 and a ³ 9 correspond to the
anomalous and normal Soret e}ect\ respectively#[ We
suppose that both coe.cients are constant\ so we have
the equation for concentration

1C
1t

¦v9C � D"DC¦aDT#[ "1[4#

The heat transport and continuity equations are writ!
ten as in the standard Boussinesq model

1T
1t

¦v9T � xDT "1[5#

div v � 9 "1[6#

where x is the heat di}usivity coe.cient[
In the asymptotic case of high frequency and small

amplitude the averaging method can be applied to obtain
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the closed system of equations for mean _elds*velocity\
temperature\ pressure and concentration[ The details of
the averaging procedure are rather standard "see ð5Ł# and
are omitted here[

The system of equations for mean _elds can be written
in the form]

1v

1t
¦"v9#v � −

0
r

9p¦nDv¦`"b0T¦b1C#g

¦
0
1

b1V1"w9#ð"b0T¦b1C#n−wŁ "1[7#

1T
1t

¦v9T � xDT "1[8#

1C
1t

¦v9C � D"DC¦aDT# "1[09#

div v � 9 "1[00#

div w � 9\ curlw � 9"b0T¦b1C#×n\ "1[01#

where v\ p\ T and C are the mean parts of corresponding
_elds[ All the mean _elds are the function slowly varying
with time "the characteristic time is much longer than the
vibration period t#\ w is an additional variable which
varies slowly with time[ It is the solenoidal part of the
vector "b0T¦b1C#n[ It is also the slowly varying time
dependent amplitude of the oscillatory "quick# part of
the velocity _led v\ as de_ned by

v? � bV sin Vtw[ "1[02#

Let us now de_ne the equations system for the mean
_eld in non dimensional form\ using the following units]
h for distance\ h1:n for time\ x:h for velocity\ U for tem!
perature\ b0U:b1 for concentration\ b0U for w and rnx:h1

for pressure[ Thus the governing system is]

1v

1t
¦

0
Pr

"v9#v � −9p¦Dv¦Ra"T¦C#g

¦Rav"w9#ð"T¦C#n−wŁ\ "1[03#

Pr
1T
1t

¦v9T �DT "1[04#

Sc
1C
1t

¦
Sc
Pr

v9C �D"C−oT# "1[05#

div v � 9 "1[06#

div w � 9\ curlw � 9"T¦C#×n[ "1[07#

The problem includes the following set of non!dimen!
sional parameters] the Rayleigh number Ra\ which is
positive if the system is heated from below and negative
if it is heated from above^ the vibrational parameter Rav

"the vibrational analog of the Rayleigh number# which
is always positive\ the Prandtl number Pr and the Schmidt
number Sc\ the non dimensional parameter of the Soret
e}ect $\ which is either positive "normal e}ect# or nega!
tive "anomalous e}ect#[ The parameters are determined
as]

Ra �
`b0Uh2

nx
\ Rav �

"bVUhb0#1

1nx

Pr �
n

x
\ Sc �

n

D
\ $ � −

ab1

b0

[ "1[08#

Let us formulate the boundary conditions for the hori!
zontal binary mixture layer with rigid\ isothermal and
impermeable boundaries

at z � 9 and z � 0] v � 9\ wz � 9\
1C
1z

−$
1T
1z

� 9

at z � 9] T � 0\

at z � 0] T � 9[ "1[19#

The physical assumptions connected with the per!
formances of the averaging are]

"i# the frequency must be high "but not acoustic#\ thus
the period of vibration must be small with respect
to all the characteristic hydrodynamic times

t ð min 0
h1

n
\
h1

x
\
h1

D1 "1[10#

"ii# the displacement amplitude must be small with
respect to the ratio between the thickness of the layer
and the Boussinesq parameter

b ð
h

b0U
"1[11#

"iii# the accelerations must be related by

`b0U
V1h

ð 0[ "1[12#

2[ Mechanical equilibrium and stability problem

formulation

An important question is whether the state of mech!
anical quasiequilibrium "i[e[ the state at which the mean
velocity is zero\ but the pulsational component is not in
general# exists or not in our situation[

To _nd the quasiequilibrium conditions it is necessary
to set up v � 9\ 1:1t � 9\ P � P9\ T � T9\ C � C9 and
w � w9\ where P9\ T9\ C9 and w9 are the distributions in
the state of mechanical equilibrium[ The general system
leads to the following necessary conditions for quasi!
equilibrium _elds]

9"T9¦C9#×ðRag−Rav9"w9n#Ł � 9DT9 � 9\

DC9 � 9div w9 � 9\ curlw9 � 9"T9¦C9#×n "2[0#

with appropriate boundary conditions "1[19#[
It is easy to see that when the axis of vibration is

vertical "n � g#\ the state of quasiequilibrium exists and
its structure is very simple]

T9 � 0−z\
dC9

dz
� −$\ w9 � 9[ "2[1#
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The pro_les of temperature and concentration are lin!
ear and w � 9[ That means that we have to deal now
with the situation of complete "not {quasi|# mechanical
equilibrium\ i[e[ not only when the mean but also the
oscillatory components of the velocity are equal to zero[

To study the stability of mechanical equilibrium let us
consider small two dimensional disturbances of all the
equilibrium _elds]

T9¦T?\ C9¦C?\ p9¦p?\ w9¦w?\ v[

The system of equations for disturbances is obtained
from the general system ðEquations "1[03#Ð"1[07#Ł by lin!
earization near the equilibrium solution "2[1#[ "Further\
the superscript primes will be omitted[#

Let us consider 1!D!disturbances and introduce the
stream functions for the mean and oscillatory com!
ponents of the velocity]

vx �
1c

1z
\ vz � −

1c

1x
\ wx �

1F
1z

\ wz � −
1F
1x

"2[2#

and formulate the system of equations for disturbances
in terms of c\ F\ T and C]

1

1t
Dc � D1c−Ra0

1T
1x

¦
1C
1x1−"0¦$#Rav

11F

1x1

Pr
1T
1t

¦
1c

1x
� DTSc

1C
1t

¦$
Sc
Pr

1c

1x
� D"C−$T#

DF � −
1

1x
"T¦C# "2[3#

here D is a 1!D Laplace!operator in the plane "x\ z#[
We will consider the disturbances in the form of normal
modes]

"c\ T\ C\ F# �"8"z#\ u"z#\ j"z#\ f"z## exp"−lt−ikx#[

"2[4#

Here l is the decrement\ k is the wave number\ 8"z#\
u"z#\ j"z# and f"z# are the amplitudes[ After substitution
of "2[4# into "2[3# we obtain the system of amplitude
equations]

−lD8 � D18¦ikRa"u¦j#¦"0¦$#k1Ravf

−lPru−ik8 � Du

−lScj−ik$
Sc
Pr

8 � Dj−$Du

Df � ik"u¦j#\ D �
d1

dz1
−k1 "2[5#

with the boundary conditions]

at z � 9 and z � 0]

8 � 9\ 8? � 9\ f � 9\ u � 9\ j?−$u? � 9[ "2[6#

The prime denotes di}erentiation with respect to the
transversal coordinate z[ Thus we have a spectral ampli!
tude problem with decrement l as eigenvalue\ depending
on all the parameters]

l � l"Ra\ Rav\ $\ Pr\ Sc\ k#[ "2[7#

In general\ l is complex\ l � lr¦ili[ li � 9 corresponds
to the case of monotonous behavior of the disturbance
and the boundary of stability can be determined from
the condition l � 9[ The case li � 9 corresponds to the
oscillatory form of disturbance\ and the condition lr � 9
determines the boundary of oscillatory instability\
whereas the imaginary part li gives the frequency of neu!
tral critical disturbance[

In the limiting case of steady instability "1:1t � 9# the
problem "2[3# can be re!formulated[ As a result only three
parameters speci_es the instability boundary[ To obtain
the system of equations with a reduced number of par!
ameters a new variable is introduced] H � C¦aT[ Equa!
tion "1[09# then takes the form

1H
1t

¦v9H � DD0H¦
ax
D

T1[
The other equations of the system "1[7#Ð"1[01# are also
transformed[ In non!dimensional notation\ it is worth!
while to choose alternate scales for the concentration and
w\ let us take b0u"0¦o#:b1 for H and b0u"0¦o# for w[
Skipping the intermediate steps\ the following system of
equations under steady conditions can be written instead
of "2[3#]

D1c−Ra½0
1H
1x

¦
1T
1x1−Ra½v

11F

1x1
� 9

DT−
1c

1x
� 9

D"H−8T# � 9

dF¦
1

1x
"H¦T# � 9[

Here dc � cIV−1k1cý¦k3c[
Thus a stability boundary is determined then by three

parameters]

Ra½� Ra"0¦o#\ Ra½v � Rav"0¦o#1 8 �
Sc
Pr

o

0¦o
[

The situation is similar to that investigated by Gut!
kowicz!Krusin et al[ ð6Ł[ Nevertheless we _nd it expedient
to keep the _ve parameters when discussing the results[
It allows an easier and a better physical understanding
and facilitate the comparison with the case of the longi!
tudinal orientation of the axis of vibration ð4Ł[

3[ The limiting case of long!wave disturbances

In the general case the solution of the eigenvalue prob!
lem "2[5#\ "2[6# must be found numerically[ But the con!
dition of impermeability enables us to expect that for
some ranges of parameter values\ long!wave disturbances
"with the wave number k � 9# are responsible for insta!
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bility excitation[ To study the behaviour of long!wave
disturbances one may develop the regular perturbation
method with the wave number k as a small parameter[

So\ let us try to construct the asymptotic solution of
the spectral amplitude problem "2[5#\ "2[6# in the form of
power expansions of all the amplitudes and the eig!
envalue]

8 � 89¦k80¦k181¦ = = =

u � u9¦ku0¦k1u1¦ = = =

j � j9¦kj0¦k1j1¦ = = =

f � f9¦kf0¦k1f1¦ = = =

l � l9¦kl0¦k1l1¦ = = = "3[0#

In a standard way we obtain the systems of equations
of successive approximations ðthe boundary conditions
in each approximation coincide with "2[6#Ł[

The system of equations in the zeroth order is]

−l98ý9 � 8IV
9

−l9u9Pr � uý9
−l9j9Sc � jý9−$uý9

fý9 � 9[ "3[1#

The inspection of the zero!order spectral problem
shows that only one non trivial level exists]

l9 � 9\ 89 � 9\ u9 � 9\ f9 � 9\ j9 � const "3[2#

where const can be determined from the condition of
normalization[ This level is neutral and it is of con!
centrational type[

For the _rst order we have the non homogeneous sys!
tem]

8IV
0 � −iRaj9

uý0 � 9

jý0 � −l0Scj9

fý0 � ij9[ "3[3#

The condition of solvability gives l0 � 9[ The solution
is]

l0 � 9\ u0 � 9\ j0 � const

f0 �
ij9

1
z"z−0#\ 80 � −

iRaj9

13
z1"z−0#1[ "3[4#

The amplitude system of the second order is]

8IV
1 � −iRaj0

uý1 � −i80

jý1 � j9−i$8000¦
Sc
Pr1−l1Scj9

fý1 � ij0[ "3[5#

Only the solvability condition for this non!
homogeneous system is required[ This condition can be

obtained by integration of the equation for j1 with respect
to z from z � 9 up to z � 0[

This allows us to determine l1\ the _rst non!vanishing
approximation to the decrement

l1 �
0
Sc00−$

Sc
Pr

Ra
6191[ "3[6#

So we see that the decrement is real and the dis!
turbances are monotonous in the long!wave limiting case[
The stability boundary is determined from the condition
l1 � 9 and the critical value of Ra for the long wave mode
is]

Ra �
619Le

$
\ "3[7#

where Le � Pr:Sc\ is the Lewis number[
Thus\ the critical value of the Rayleigh number for

the long wave mode does not depend on the vibrational
parameter Rav\ but it depends mostly on the Soret par!
ameter $[

Long wave excitation is possible when the system is
heated from below in the case of the normal Soret e}ect
and also when the system is heated from above*in the
case of the anomalous e}ect[

To judge whether the long wave mode is more danger!
ous or not it is necessary to determine the stability bound!
ary for cellular modes "with _nite values of the wave
number k#[ This requires the solution of the complete
spectral problem "2[5#\ "2[6#[

Some results of the numerical solution of this problem
are presented in the next section[

4[ Numerical results

The numerical solution of the complete spectral eig!
envalue problem has been obtained by straight forward
step!by!step numerical integration of the system of ampli!
tude equations by the RungeÐKuttaÐMerson method in
combination with shooting procedure[ Some numerically
determined instability boundary characteristics are pre!
sented] the critical values of the Rayleigh number Ram

"obtained as a result of minimization of critical Ra with
respect to the wave number k#\ the critical wave number
km "corresponding to the minimum of the neutral curve
R"k## and the critical frequency value of the most danger!
ous frequency lim "in the case of oscillatory instability#[
In Figs 0Ð3 the numerical results are presented in the
form of stability curves in the plane oÐRam "i[e[ the mini!
mal critical Rayleigh number Ra\ a function of the non!
dimensional Soret parameter $# for a values of the
vibrational parameter Rav and for a few combination of
Pr and Sc corresponding to typical gaseous and liquid
binary mixtures[ In the upper parts of the _gures the data
concerning km and lim are also presented[ In all the _gures
the solid lines correspond to the stability boundary with
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Fig[ 0[ The instability parameters for Pr � 0 and Sc � 0[ The
numeration of the curves] 0*Rav � 9\ 1*km � 9\ 2*Rav � 199\
3*Rav � 0999[

Fig[ 1[ The instability for Pr � 9[64 and Sc � 9[4[ The numer!
ation of the curves] 0−Rav � 9\ 1−km � 9\ 2−Rav � 0999[

Fig[ 2[ The instability parameters for Pr � 9[64 and Sc � 0[4[
The numeration of the curves] 0−Rav � 9\ 1−km � 9\
2−Rav � 0999[

Fig[ 3[ The instability parameters for Pr � 5[6 and Sc � 566[
The numeration of the curves] 0−Rav � 9\ 1−km � 9\
2−Rav � 1999[
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respect to the monotonous cellular modes\ the dashed
lines*to oscillatory cellular modes\ and the dotted
lines*to long wave monotonous modes[ The dotted lines
presented in Figs 0Ð3 are determined numerically but in
the parameter ranges where the long wave mode is the
most dangerous\ the critical values of the Rayleigh num!
ber coincide with those given by the asymptotic formula
"3[7#[

First consider the model case of a gaseous binary mix!
ture with the parameter values Pr � Sc � Le � 0 "Fig[
0#[ Oscillatory instability is not possible in this case[ Line
0 corresponds to Rav � 9\ where vibration is absent "this
problem is not new\ see ð7Ð09Ł and references therein#[
We see the destabilization due to the Soret e}ect in the
region $ × 9 and stabilization at $ ³ 9 when heated from
below[ There is also the stability line in the region $ ³ 9
when heated from above[

When a vibration is switched on "Rav � 199*line 2^
Rav � 0999*line 3#\ the critical values of Ram increase
indicating vibrational stabilization[ All the lines cor!
responding to Rav � 9 are disposed between two charac!
teristic lines] 0 "Rav � 9# and 1 "km � 9#[ So\ the boundary
of long wave instability which is described by quation
"3[7# is the upper boundary of the stability curves and
this condition is valid in other cases\ presented in Figs 1Ð
3[ Therefore\ independently of the parameters\ we may
say that Ra × 619 Le:$ is a su.cient criterion for insta!
bility under heating from below[ When $ is small the
instability under vibration is of cellular character[ For
example\ at Rav � 199 the instability is cellular if $ ³ 0[8
but if $ × 0[8 transition to the long wave form of insta!
bility occurs[ For Rav � 0999 the critical value of $ is 9[82[

For Pr � 9[64 and Sc � 9[4 "Le � 0[4# "Fig[ 1# the
situation is qualitatively the same[ As above\ only quali!
tative shiftings are observed[ The new element is that
oscillatory amplifying modes are now possible but the
most dangerous mode is still the monotonous one[

For Pr � 9[64 and Sc � 0[4 "Fig[ 2#\ i[e[ Le � 9[4³ 0
oscillatory instability appears as the most dangerous
mode for $ ³ 9[

Finally consider the case corresponding to the typical
liquid solution\ for example\ salt!water\ namely\ Pr � 5[6
and Sc � 566 "Fig[ 3#[ Note the sharp destabilization of
the monotonous mode in the region of $ × 9 and the
sharp stabilization at $ ³ 9[

When the system is heated from below\ in practically
the entire region $ ³ 9 the oscillatory modes are respon!
sible for the appearance of instability[ In contrast\ when
the system is heated from above and $ ³ 9\ the instability
threshold is connected with long wave disturbances[

5[ Conclusions

For a binary mixture in an in_nite horizontal layer in
the presence of vertical high frequency vibration\ con!

trary to the case of longitudinal h[f[ vibration\ the speci_c
vibrational mechanism of instability by excitation is not
operative[ The e}ect of vibration is purely stabilizing] at
arbitrary values of binary mixture parameters the critical
Rayleigh number increases monotonously with increas!
ing vibrational parameter[

The critical values of Rayleigh number and the charac!
teristics of the critical disturbances are determined ana!
lytically "in the case of long wave modes# and numerically
"in the case of cellular modes#[
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